skip to main content


Search for: All records

Creators/Authors contains: "Ohlert, Timothy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Abstract Causal effects of biodiversity on ecosystem functions can be estimated using experimental or observational designs — designs that pose a tradeoff between drawing credible causal inferences from correlations and drawing generalizable inferences. Here, we develop a design that reduces this tradeoff and revisits the question of how plant species diversity affects productivity. Our design leverages longitudinal data from 43 grasslands in 11 countries and approaches borrowed from fields outside of ecology to draw causal inferences from observational data. Contrary to many prior studies, we estimate that increases in plot-level species richness caused productivity to decline: a 10% increase in richness decreased productivity by 2.4%, 95% CI [−4.1, −0.74]. This contradiction stems from two sources. First, prior observational studies incompletely control for confounding factors. Second, most experiments plant fewer rare and non-native species than exist in nature. Although increases in native, dominant species increased productivity, increases in rare and non-native species decreased productivity, making the average effect negative in our study. By reducing the tradeoff between experimental and observational designs, our study demonstrates how observational studies can complement prior ecological experiments and inform future ones. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Prieto Aguilar, Iván (Ed.)
    The use of trait-based approaches to understand ecological communities has increased in the past two decades because of their promise to preserve more information about community structure than taxonomic methods and their potential to connect community responses to subsequent effects of ecosystem functioning. Though trait-based approaches are a powerful tool for describing ecological communities, many important properties of commonly-used trait metrics remain unexamined. Previous work in studies that simulate communities and trait distributions show consistent sensitivity of functional richness and evenness measures to the number of traits used to calculate them, but these relationships have yet to be studied in actual plant communities with a realistic distribution of trait values, ecologically meaningful covariation of traits, and a realistic number of traits available for analysis. Therefore, we propose to test how the number of traits used and the correlation between traits used in the calculation of functional diversity indices impacts the magnitude of eight functional diversity metrics in real plant communities. We will use trait data from three grassland plant communities in the US to assess the generality of our findings across ecosystems and experiments. We will determine how eight functional diversity metrics (functional richness, functional evenness, functional divergence, functional dispersion, kernel density estimation (KDE) richness, KDE evenness, KDE dispersion, Rao’s Q) differ based on the number of traits used in the metric calculation and on the correlation of traits when holding the number of traits constant. Without a firm understanding of how a scientist’s choices impact these metric, it will be difficult to compare results among studies with different metric parametrization and thus, limit robust conclusions about functional composition of communities across systems. 
    more » « less
  5. Climate change amplifies the global water cycle, making droughts more frequent and more severe. The hot deserts of the U.S. rely on the stability and frequency of water availability in order to sustain biological communities, making these ecosystems incredibly vulnerable to anticipated alterations in the water cycle. This project seeks to understand which biotic and abiotic variables are principle in determining desert ecosystem sensitivity to drought? To answer these questions, we have installed a drought manipulation that will simulate an extreme drought event by reducing annual precipitation by 66% in seven desert sites. Plant abundance data are collected annually to track changes in the plant community. Data collection began in Spring 2018. Treatments at three Sevilleta sites began in Fall 2018 after data collection in October 2018. Treatments started at four sites in Arizona and California in March and April of 2019 and spring pretreatment data collection. The treatments will last for four years. 
    more » « less
  6. Thrall, Peter (Ed.)
  7. Haddad, Nick (Ed.)
  8. Abstract Questions

    Reordering of dominant species is an important mechanism of community response to global environmental change. We asked how wildfire (apulseevent) interacts with directional changes in climate (environmentalpresses) to affect plant community dynamics in a Chihuahuan Desert grassland.

    Location

    Sevilleta National Wildlife Refuge, Socorro County, New Mexico, USA.

    Methods

    Vegetation cover by species was measured twice each year from 1989 to 2019 along two permanently located 400‐m long line intercept transects, one in Chihuahuan Desert grassland, and the second in the ecotone between Chihuahuan Desert and Great Plains grasslands. Trends in community structure were plotted over time, and climate sensitivity functions were used to predict how changes in the Pacific Decadal Oscillation (PDO) affected vegetation dynamics.

    Results

    Community composition was undergoing gradual change in the absence of disturbance in the ecotone and desert grassland. These changes were related to the reordering of abundances between two foundation grasses,Bouteloua eriopodaandB. gracilis, that together account for >80% of above‐ground primary production. However, reordering varied over time in response to wildfire (apulse) and changes in the PDO (apress). Community dynamics were initially related to the warm and cool phases of the PDO, but in the ecotone these relationships changed following wildfire, which reset the system.

    Conclusion

    Species reordering is an important component of community dynamics in response to ecological presses. However, reordering is a complex, non‐linear process in response to ecological presses that may change over time and interact with pulse disturbances.

     
    more » « less
  9. Abstract

    Dominance often indicates one or a few species being best suited for resource capture and retention in a given environment. Press perturbations that change availability of limiting resources can restructure competitive hierarchies, allowing new species to capture or retain resources and leaving once dominant species fated to decline. However, dominant species may maintain high abundances even when their new environments no longer favour them due to stochastic processes associated with their high abundance, impeding deterministic processes that would otherwise diminish them.

    Here, we quantify the persistence of dominance by tracking the rate of decline in dominant species at 90 globally distributed grassland sites under experimentally elevated soil nutrient supply and reduced vertebrate consumer pressure.

    We found that chronic experimental nutrient addition and vertebrate exclusion caused certain subsets of species to lose dominance more quickly than in control plots. In control plots, perennial species and species with high initial cover maintained dominance for longer than annual species and those with low initial cover respectively. In fertilized plots, species with high initial cover maintained dominance at similar rates to control plots, while those with lower initial cover lost dominance even faster than similar species in controls. High initial cover increased the estimated time to dominance loss more strongly in plots with vertebrate exclosures than in controls. Vertebrate exclosures caused a slight decrease in the persistence of dominance for perennials, while fertilization brought perennials' rate of dominance loss in line with those of annuals. Annual species lost dominance at similar rates regardless of treatments.

    Synthesis.Collectively, these results point to a strong role of a species' historical abundance in maintaining dominance following environmental perturbations. Because dominant species play an outsized role in driving ecosystem processes, their ability to remain dominant—regardless of environmental conditions—is critical to anticipating expected rates of change in the structure and function of grasslands. Species that maintain dominance while no longer competitively favoured following press perturbations due to their historical abundances may result in community compositions that do not maximize resource capture, a key process of system responses to global change.

     
    more » « less